Série de révision sur les courbes et les surfaces

Exercice 1. Les équations paramétriques de la droite passant par le point A(2,3,5) et perpendiculaire au plan d'équation cartésienne 3x - 2y + z + 5 = 0 sont (où $k \in \mathbb{R}$)

$$\Box \begin{cases} x = 3 + 2k \\ y = -2 - 3k \end{cases}$$

$$\square \begin{cases} x = 2 + 3k \\ y = 3 - 2k \\ z = 5 + k \end{cases}$$

$$\Box \begin{cases} x = 3 - 2k \\ y = -2 + k \\ z = 1 + 5k \end{cases}$$

$$\Box \begin{cases} x = 2 + -2k \\ y = 3 + k \\ z = 5 + 5k \end{cases}$$

Exercice 2. Soient les vecteurs $\vec{a} = (5, 2, -3)$ et $\vec{b} = (2, -1, 6)$. Soit \vec{c} un vecteur de l'espace tel que le produit mixte ente \vec{a} , \vec{b} et \vec{c} est nul. Alors

$$\vec{c} = (4, 2, -3)$$

$$\vec{c} = (9, 4, -1)$$

$$\vec{c} = (-5, 0, 6)$$

$$\vec{c} = (7, 1, 3)$$

Exercice 3. Le vecteur tangent à la courbe $\gamma(t) = \left(\cos(t), \frac{t^3}{4}, e^{-t}\sin(t)\right)$ au point $P = (-1, -\frac{\pi^3}{4}, 0)$ est

$$\Box (1, \frac{\pi^2}{4}, -e^{\pi})$$

$$\Box (0, \frac{3\pi^2}{4}, -e^{\pi})$$

$$\Box (0, \frac{3\pi^2}{4}, e^{-\pi})$$

$$\Box (-1, \frac{3\pi^2}{4}, 0)$$

Exercice 4. La courbe $(2\cos(t), -3, 2\sin(t))$, avec $t \in \mathbb{R}$, se situe sur la surface S d'équation implicite

$$x^2 + y + z^2 = 1$$

$$x^2 + y^2 = z^2$$

$$x^2 + y^2 + z^2 = 1$$

$$z^2 - y^2 = z^2$$

Exercice 5. La courbe $(x+3)^2 - \left(\frac{2(y-1)}{3}\right)^2 = 4$ admet comme paramétrisation

- \Box $(\cosh(\theta) 3, 3\sinh(\theta) + 1)$, pour toute valeur de t réelle
- \Box $(2\cosh(\theta) 3, 3\sinh(\theta) + 1)$, pour toute valeur de t réelle
- \Box $(2\cos(\theta) 3, 3\sin(\theta) + 1)$, avec $0 \le \theta \le 2\pi$
- \Box $(\cos(\theta) 3, 3\sin(\theta) + 1)$ avec $0 \le \theta \le \pi$

Exercice 6. L'ellipse $\frac{x^2}{4} + (z-2)^2 = 3$ admet comme paramétrisation

- \Box $(2\sqrt{3}\cos(\theta), 0, \sqrt{3}\sin(\theta) 2)$, avec $0 \le \theta \le 2\pi$
- \Box $(2\cos(\theta), 0, \sin(\theta) 2)$, avec $0 \le \theta \le 2\pi$
- \Box $(2\sqrt{3}\cos(\theta), 0, \sqrt{3}\sin(\theta) + 2)$, avec $0 \le \theta \le 2\pi$
- \Box $(2\cos(\theta), 0, \sin(\theta) + 2)$, avec $0 \le \theta \le \pi$

Exercice 7. La surface donnée par l'équation $x^2 + 9z^2 = y$ est

□ un cylindre

□ un paraboloïde de révolution

□ un cône

□ une sphère

Exercice 8. Le plan passant par les points A = (2, 1, 0), B = (1, 0, 1) et C = (-1, -2, 0) a comme équation paramétrique

- \Box $(-\alpha 3\beta, -\alpha \beta, \alpha)$, avec $\alpha, \beta \in \mathbb{R}$
- \square $(2-3\beta,1,\alpha)$, avec $\alpha,\beta\in\mathbb{R}$
- \Box $(2-\alpha+3\beta,1-\beta,1+\alpha)$, avec $\alpha,\beta\in\mathbb{R}$
- \square $(2-\alpha-3\beta,1-\alpha-3\beta,\alpha)$, avec $\alpha,\beta\in\mathbb{R}$

Exercice 9. La pente de la courbe paramétrique $(\alpha^2, \alpha + 1)$ au point P = (9, -2) vaut

 \Box -6

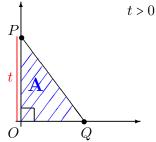
 $\Box \frac{1}{3}$

 $\Box -\frac{1}{6}$

 $\Box \frac{3}{4}$

Exercice 10. On cherche à déterminer l'enveloppe de la famille des hypoténuses d'une famille de triangles rectangles ayant leurs cathètes sur les axes de coordonnées et avec une aire constante égale à A.

Représentation paramétrique:



Pour t>0, une représentation paramétrique de l'enveloppe cherchée est donnée par:

$$\Box x = \frac{A}{t} \qquad y = \frac{t}{2A}$$

$$\Box \ x = -t^2 \qquad y = -\frac{1}{2A} + t$$

$$\Box \ \ x = -\frac{A}{t} \qquad \ \ y = -\frac{3}{2}t$$

$$\Box x = \frac{A}{t} \qquad y = \frac{t}{2}$$

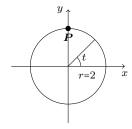
[Suggestion: trouver d'abord les coordonnées des points P et Q et l'équation du chaque droite appartenant à cette famille qui passe par les points P et Q]

Exercice 11. On considère le cercle de centre O = (0,0) et rayon 2, i.e. $x^2 + y^2 = 4$. En utilisant sa paramétrisation en fonction de l'angle t (donné en radians), la développante en P = (0,2) est la courbe (x(t), y(t)) définie par:

$$x(t) = 2\cos(t) - \sin(t)2t, \quad y(t) = 2\sin(t) + \cos(t)2t$$

$$\Box x(t) = 2\cos(t) + \sin(t)(2t - \pi), \quad y(t) = 2\sin(t) - \cos(t)(2t - \pi)$$

$$\Box x(t) = 2\cos(t) - \sin(t)(2t - \pi), \quad y(t) = 2\sin(t) + \cos(t)(2t - \pi)$$



Exercice 12. La surface de révolution S obtenue en faisant tourner la courbe

$$\gamma(t) = (0, t^2, e^t \sinh(t))$$

autour de l'axe Oy admet comme paramétrisation

- \Box $(0,0,e^t\sinh(t))$, avec $t \in \mathbb{R}$ et $0 \le \alpha \le 2\pi$
- \Box $(e^t \sinh(t)\cos(\alpha), e^t \sinh(t)\sin(\alpha), t^2)$, avec $t \in \mathbb{R}$ et $0 \le \alpha \le 2\pi$
- \Box $(t^2 \sin(\alpha), t^2 \cos(\alpha), e^t \sinh(t))$, avec $t \in \mathbb{R}$ et $0 \le \alpha \le 2\pi$
- $\Box \left(e^t \sinh(t) \sin(\alpha), t^2, e^t \sinh(t) \cos(\alpha)\right), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$

Exercice 13. La surface de révolution S obtenue en faisant tourner la courbe

$$\gamma(t) = (e^t \sin(t), e^t \cos(t), t)$$

autour de l'axe Oz admet comme paramétrisation

- $\Box \left(e^t \sqrt{1 + e^{2t}} \cos(\alpha), e^t \sqrt{1 + e^{2t}} \sin(\alpha), t \right), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$
- \Box $(e^t \cos(\alpha), e^t \sin(\alpha), t)$, avec $t \in \mathbb{R}$ et $0 \le \alpha \le 2\pi$
- $\Box \left(e^t \sin(t) \cos(\alpha), e^t \cos(t) \sin(\alpha), t\right), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$
- $\Box \left(e^t \sqrt{1 + e^{2t}} \sin(t) \sin(\alpha), e^t \sqrt{1 + e^{2t}} \cos(t) \cos(\alpha), t \right), \text{ avec } t \in \mathbb{R} \text{ et } 0 \le \alpha \le 2\pi$

Exercice 14. Le volume engendré par la surface de révolution S obtenue en faisant tourner la courbe $\gamma(t) = \left(\sqrt{3}\cos(t), 0, -\cos(t)\right)$ autour de l'axe Oz, pour t allant de 0 à 2π vaut:

 \Box + ∞

$$\Box \frac{\sqrt{2}}{2}\pi \qquad \Box 0$$

Exercice 15. Une paramétrisation de la surface réglée donnée par la famille de segments de droites entre le deux courbes paramétrées:

$$\alpha(t) = (2\cos(t), t, 3\sin(t))$$
 $\beta(t) = (0, t, 0)$

est:

- \Box $(2\cos(t)(1-s), 1-2st, 3\sin(t)(1-s))$
- \Box $(2\cos(t)(1-s), t, 3\sin(t)(1-s))$
- \Box (cos(t)(1-s), (1-s)t, sin(t)(1-s))
- \Box (cos(t)(1-s), s, 3 sin(t)(1-s))

Exercice 16. La courbe de Bézier quadratique ayant points de contrôle $p_0 = (0,1)$, $p_1 = (2,2)$ et $p_2 = \left(\frac{1}{2},4\right)$ a comme expression:

$$\Box \left(4t - \frac{7}{2}t^2, 1 + 2t + t^2\right)$$

$$\Box \left(t+t^2, 8t-6t^2\right)$$

$$\Box \left(4t + \frac{9}{2}t^2, 1 - 6t - 7t^2\right)$$

$$\Box \left(-4t + \frac{7}{2}t^2, 1 + 2t + t^2\right)$$

Exercice 17. L'aire latérale de la surface de révolution S obtenue en faisant tourner la courbe $\gamma(t) = \left(t, 0, \frac{3}{4}t + \frac{1}{2}\right)$ autour de l'axe Oz, pour t allant de $-\frac{2}{3}$ à 2 vaut:

- \Box $+\infty$
- $\Box \frac{40}{9}\pi$
- $\Box \ \frac{520}{81}\pi$
- \Box 0